

Email: sales@tinzyme.com Website: www.tinzyme.com Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

EZ Transfer

Product Number: TR9810

Shipping and Storage

This product is transported at low temperature and stored at -20°C, with a validity period of 1 year to avoid repeated freezing and thawing. If it cannot be used all at once, 0.1ml can be divided into small portions for 0.2cm electric rotary cups, and 0.25ml can be divided into small portions for 0.4cm electric rotary cups.

Description

EZ Transfer electrotransfection reagent (electrotransfection buffer) is used to efficiently and low toxicity transfect nucleic acids (DNA, siRNA, etc.) into difficult to transfect cells. EZ Transfer is compatible with various conventional electrometers, including Lonza Amaxa®Nucleofector®,Bio-Rad®Gene Pulser and Harvard-BTX® electroporators. EZ Transfer can be used for exponential decay and square wave form electroporation experiments.

Important optimization tips

1. Lonza (Amaxa) cell nuclear power transfer instrument

When using the EZ Transfer transfection reagent with the Lonza (Amaxa) cell nuclear transfection instrument, please follow the operating guidelines and optimization plan of the Lonza (Amaxa) cell nuclear transfection instrument, just replace the electroporation mixture with EZ Transfer.

2. Cell density during electroporation

Determine the optimal cell density for each cell type to maximize the efficiency of electroporation. In the final system containing electroporation reagents, the cell density during electroporation is generally within the range of $1-10 \times 10^6$ cells/ml. For suspended cells, it is best to have a high cell density close to 10×10^6 cells/ml. For adherent cells, the recommended cell density is $1-5 \times 10^6$ cells/ml. You can refer to Tables 1 and 2 to understand the cell density at which EZ Transfer reagents start.

3. Nucleic acid purity and concentration

3.1. **Do not use DNA purified solely by ethanol precipitation method.** The residual salt in the ethanol precipitation method can cause a change in current and have a negative impact on electroporation.

The recommended concentration range for DNA extraction is 1-5 mg/ml, dissolved in pure water or TE. The use of high concentration DNA may lead to uneven mixing with cells. A lower nucleic acid concentration may dilute the electroporation mixture.

3.2. SiRNA uses high-purity and sterile siRNA.Determine the optimal siRNA concentration for electrotransfection. It is recommended to conduct gradient experiments with different concentrations of siRNA within the final concentration range of 250-750nM.

4. Pulse condition optimization

The EZ Transfer electrotransfection reagent can be used for both exponential decay electroporation experiments and square wave electroporation experiments. Some types of cells are better transfected in the form of square wave pulses, while others respond better to exponential decay forms.

5. Cell incubation time after electrotransfection

There is an optimal incubation time for each cell type after electrotransfection. For plasmid electrotransfection, the optimal incubation time is generally 4-48 hours, and the specific optimal time needs to be adjusted according to the experimental purpose, plasmid properties, and half-life of the expressed protein.

6. The issue of cell death in electrotransfection

When using EZ Transfer, due to the damage of electroporation to cells, according to experience, the transfection effect is best when the mortality rate after transfection is around 50%.

For Research Use Only

Email: sales@tinzyme.com Website: www.tinzyme.com Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

Experimental plan for electroporation

For the Lonza (Amaxa) nuclear transfection machine, it is recommended to follow the Lonza (Amaxa) operation optimization guidelines and simply replace the electroporation mixture with EZ Transfer. The following steps involve conducting electroporation experiments on plasmid DNA, siRNA, or other nucleic acids using other electrotransfection instruments capable of generating exponential decay or square wave pulses in a 0.2cm or 0.4cm electroporation cup.

1. Prepare cells

Cell passage should be conducted 1-3 days before electroporation to maintain exponential growth during the electroporation experiment and achieve optimal cell fusion.

For adherent cells: the cell fusion degree is 70-80%.

For suspended cells: the cell density is 1-2×10⁶ cells/ml.

2. Program settings for electric rotary instruments

The exponential decay electroporation instrument has some reference conditions for cell electroporation as shown in Table 1 The reference conditions for partial cell electroporation in the square wave pulse electroporation instrument are shown in Table 2

The specific optimization parameter methods are as follows:

2.1. Exponential decay

When using a 0.4cm electric rotary cup, the exponential decay pulse conditions of most cell types are within the voltage range of 200-300V and the capacitance range of 800-1000 μ F. For a 0.2 cm electric rotary cup, the range is 80-160V and 800-1000 μ F, respectively. For the electroporation experiment using a 0.4 cm electric rotary cup, the test voltage range is 200-300V and the capacitance range is 800-1000 μ F. Firstly, maintain the voltage constant at 220V and change the capacitance in increments of 100 μ F starting from 750 μ F. Subsequently, starting from 200V, change the voltage in a gradient of 10V while maintaining a constant capacitance.

2.2. Square wave

Generally speaking, the theoretical starting condition of square wave pulses can be determined by the exponential decay parameter, that is, reducing the pulse length by half and increasing the voltage by about 10% while keeping the capacitance constant. The subsequent optimization can increase or decrease the pulse voltage near the theoretical calculation with a gradient of 10V. The recommended square wave pulse conditions are shown in Table 2. If the exponential decay pulse condition is not known, the optimal square wave pulse condition can be found by testing the voltage, capacitance, and pulse length range. When using a 0.4cm electric rotary cup, the general square wave pulse conditions for most cell types are within the voltage range of 200-300V and the capacitance range of 800-1000µF. For a 0.2 cm electric rotary cup, the range is 80-160V and 800-1000µF, respectively. The pulse length ranges from 10 to 20 milliseconds.

In addition to voltage and capacitance settings, some electroporation testers also provide settings for resistance (ohms, Ω). When using EZ Transfer for electro-hydraulic conversion, the ideal resistance is none, zero ohms (Ω), or ∞ . If your electroporation instrument has resistance options other than zero ohms, please use the lowest possible resistance.

Table 1. Recommended program settings for electroporation using EZ Transfer electroporation fluid and exponential decay pulse electroporation instrument

Cell Type	Cuvette Size	Cell Density	DNA	Electroporation	Voltage	Capacitance
	(cm)	(×10 ⁶)cells/ml	(µg)	Volume (µl)	(V)	(μF)
Primary Human	0.2	2	2	100	150	950
Keratinocyte	0.4		5	250	220	950
Primary MEFs	0.2	5	2	100	150	950
	0.4		5	250	230	950
Primary Rat Cortical	0.2	1	2	100	120	950
Neuron	0.4		-	-	-	-
A-549	0.2	5	-	-	-	-

Email: sales@tinzyme.comWebsite: www.tinzyme.comTel: +86-755-86134126WhatsApp/Facebook/Twitter: +86-189-22896756

					·	
	0.4		5	250	280	950
BHK-21	0.2	10	2	100	150	950
	0.4		5	250	280	950
CHO-K1	0.2	5	2	100	150	950
	0.4		5	250	280	950
COS-7	0.2	5	2	100	150	950
	0.4		5	250	260	950
HEK-293	0.2	5	2	100	160	950
	0.4		5	250	250	950
HEK-293T	0.2	5	-	-	-	-
	0.4		5	250	250	950
HeLa	0.2	3	2	100	130	950
	0.4		5	250	260	950
Hepa	0.2	5	2	100	160	950
	0.4		-	-	-	-
HepG2	0.2	5	2	100	170	950
	0.4		5	250	250	950
HL-60	0.2	10	2	100	150	950
	0.4		5	250	275	950
HUV-EC	0.2	3	-	-	-	-
	0.4		5	250	250	950
Jurkat E6-1	0.2	10	2	100	150	950
	0.4		5	250	260	950
K562	0.2	10	2	100	130	950
	0.4		5	250	250	950
MCF-7	0.2	3	2	100	150	950
	0.4		-	-	-	-
NIH-3T3	0.2	10	2	100	160	950
	0.4		5	250	260	950
NIKS	0.2	2	2	100	170	950
	0.4		5	250	280	950
PC-12	0.2	3	2	100	130	950
	0.4		5	250	240	950
RAW 264.7	0.2	5	2	100	150	950
	0.4		5	250	260	950
SH-SY5Y	0.2	5	-	-	-	-
	0.4		5	250	250	950
SK-BR-3	0.2	5	2	100	160	950
	0.4		5	250	260	950
SK-N-MC	0.2	5	2	100	90	950
	0.4		5	250	240	950
THP-1	0.2	10	2	100	140	950
	0.4		5	250	250	950
U-937	0.2	10	-	_	-	-

For Research Use Only

Email: sales@tinzyme.com Website: www.tinzyme.com Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

	0.4		5	250	260	950
Vero	0.2	5	2	100	170	950
	0.4		-	-	-	-
Other cell types	0.2	5-10	2	100	80-160	800-1000
	0.4		5	250	200-300	800-1000

Table 2. Recommended program settings for electroporation using EZ Transfer electroporation fluid and square wave pulse electroporation instrument

Cell Type	Cuvett e	Cell Densit	DNA(µg)	Electroporatio n	Voltage(V)	Capacitanc	Pulse Lengt
	Size(cm)	y(×10 ⁶)		Volume(µl)		e(µF)	h(mSec)
		cells/ml					
Primary Human	0.2	2	2	100	170	950	10
Keratinocyte	0.4		5	250	250	950	15
Primary MEFs	0.2	5	2	100	170	950	10
	0.4		5	250	280	950	15
A-549	0.2	5	-	-	-	-	-
	0.4		5	250	280	950	15
Jurkat E6-1	0.2	10	2	100	180	950	10
	0.4		5	250	275	950	15
NIH-3T3	0.2	10	2	100	160	950	10
	0.4		5	250	260	950	15
NIKS	0.2	2	2	100	180	950	10
	0.4		-	-	-	-	-
Other cell types	0.2	5-10	2	100	80-160	800-1000	10-20
	0.4		5	250	200-300	800-1000	10-20

3. Electric perforation experiment

3.1. Calculate the required cell count based on the recommended cell density in Table 1 and the electric trochanter used (for a 0.2 cm electric trochanter, the volume is calculated as 0.1 ml; for a 0.4 cm electric trochanter, the volume is calculated as 0.25 ml.). If a 0.2cm electroconvulator requires a cell density of 5×10⁶ cells/ml, then each electroconvulator requires 0.1ml * 5×10⁶ cells/ml=0.5×10⁶ cells.

For suspended cells, the cell density during electroporation is generally 10×10⁶ cells/ml.

For adherent cells, the cell density during electroporation is generally 1-5×10⁶ cells/ml.

- 3.2. Restore the EZ Transfer transfection solution to room temperature, preheat trypsin EDTA and complete culture medium to 37 °C. Pre add the complete culture medium to the culture vessel to prepare the cultured cells after electroporation.
- 3.3. Routine collection of cells, centrifugation, removal of supernatant, resuspend cells in a certain amount of complete culture medium according to cell dosage, count, measure cell density, and calculate the required cell volume.
- 3.4. Transfer the corresponding number of cells to a new test tube using a pipette, and then centrifuge at room temperature for 10 minutes at a speed of 90 ×g. Completely remove the supernatant.
- 3.5. Resuspension cells with an appropriate amount of EZ Transfer. For a 0.2cm electric transfer cup, 0.1ml of EZ Transfer is required each time, while for a 0.4cm electric transfer cup, 0.25ml of EZ Transfer is required each time.
- 3.6. Add nucleic acid to the EZ Transfer transfection solution/cell mixture solution to prepare the EZ Transfer transfection solution/nucleic acid/cell mixture solution. The volume of nucleic acid should generally not exceed 10% of the amount of electroporation solution used (0.1ml of electroporation solution should not exceed 10µl, 0.25ml of electroporation solution should not exceed 25µl).
- 3.7. Transfer the cell/nucleic acid/electroporation solution into an electroporation cup and perform electroporation. Note: 1) After mixing cells with electroporation buffer, electroporation should be performed as soon as possible.

For Research Use Only

Email: sales@tinzyme.comWebsite: www.tinzyme.comTel: +86-755-86134126WhatsApp/Facebook/Twitter: +86-189-22896756

2) During electric rotation, bubbles should be avoided in the electric rotor cup.

3.8. Immediately transfer the electroconverted cells to a culture dish and incubate for 4-48 hours to analyze the results.

Common problems and solutions

oration. his cell ells/ml f 1-5 × on and f DNA start at ins.					
nis cell ells/ml f 1-5 × on and f DNA start at					
ells/ml f 1-5 × on and f DNA start at					
f 1-5 × on and f DNA start at					
on and f DNA start at					
f DNA start at					
f DNA start at					
start at					
start at					
start at					
ins.					
ced by					
Set up a positive control group using EZ Transfer electroporation solution, such as transfection					
with luciferase β - Plasmids encoded by galactosidase or green fluorescent protein (gfp).					
The optimal siRNA concentration is generally between 250 and 750 nM final concentration. The					
Ensure that the sequence of siRNA is correct. It is best to test multiple sequences for optimal					
re the					
ransfer					
ransfer					
uch as					
mRNA					
riment.					
nerally					
ient of					

Email: sales@tinzyme.comWebsite: www.tinzyme.comTel: +86-755-86134126WhatsApp/Facebook/Twitter: +86-189-22896756

Cells did not immediately	After each electroporation, immediately transfer the cells from each test tube to a culture dish
transfer to containers	containing hot complete culture medium.
containing complete culture	
medium	
Plasmid DNA contains	1. Perform electroporation using high-purity, sterile, endotoxin free, and pollution-free DNA.
endotoxins	2. DNA purified using cesium chloride gradient or anion exchange should not be prepared
	using miniprep kits as it may contain high levels of endotoxins.
DNA contains a large amount	If DNA is prepared through ion exchange columns and ethanol precipitation steps, we recommend
of salt ions	changing the DNA solution to a salt free or low salt solution, such as washing DNA in water and
	adding 5 mM NaCl.
Excessive DNA content in	Reduce the amount of DNA used during electroporation. The experiment can be conducted using a
electroporation mixture	DNA concentration of 5ug/ml in the final electroporation volume. Compare the toxicity level with
	the experimental results of the cell+EntersterTME solution control group to evaluate the
	effectiveness of DNA transfection. If cytotoxicity is still observed, it is likely due to the
	concentration of EZ Transfer/cell mixture or the dissolution of too many cells.
The expression of target genes	Compare the cytotoxicity of the blank control group and the transfected empty vector control
is toxic to cells	group to evaluate the toxic effect of the protein expressed by the target gene on cells. If
	electroporation experiments require lower levels of target gene expression, it may be considered to
	reduce the amount of plasmid used. If necessary, transfect using vector DNA (such as empty clone
	vectors) while maintaining the optimal final DNA concentration (20ug/ml).
Essential genes are disrupted	If siRNA used for electrotransfection directly acts on essential genes in cells, it may lead to
	cytotoxicity due to gene knockdown. Set up a negative control group experiment to compare the
	cytotoxicity levels of the negative siRNA control group and the knocked down genome.
Changes in cell morphology	Mycoplasma contamination can alter cell morphology and affect transfection efficiency. Check for
	Mycoplasma contamination in cells. Fresh frozen cells or appropriate antibiotics can be used to
	clear Mycoplasma. Excessive or insufficient cell passages can make cells more sensitive to
	electroporation. Maintain the same number of cell passages between experiments to achieve
	reproducibility.
	1

Related products

TR2000: Used for transfecting DNA into HEK293T cells.