

Tinzyme Co., Limited

Email: sales@tinzyme.com Website: www.tinzyme.com Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

MMLV Reverse Transcripase 2.0

Product Number: RT20

Shipping and Storage

Store at -20°C .

Components

Component	RT20	RT20	RT20	RT20
MMLV Reverse Transcripase2.0(200U/µl)	10KU	50KU	50KU×4	50KU×10
5×RT Buffer	0.4ml	2.0ml	2.0ml×4	2.0ml×10
DEPC treatment of H ₂ O	1.0ml	5.0ml	20ml	50ml

Description

MMLV Reverse Transcriptase 2.0 is Moloney Murine Leukemia Virus, The upgraded version of MMLV Reverse Transcriptase has RNA dependent DNA polymerase activity, DNA dependent DNA polymerase activity, and lacks RNase H activity. The DNA polymerase activity dependent on RNA can synthesize complementary DNA strands (cDNA) using RNA as a template chain; The DNA polymerase activity dependent on DNA can synthesize complementary double stranded DNA using cDNA single strands as templates. The thermal stability of Reverse Transcriptase 2.0 has been significantly improved, and it can react at 55-60°C, retaining more than 50% of enzyme activity within this temperature range. This enzyme has stronger elongation ability and can be used for longer cDNA synthesis.

Our company's MMLV Reverse Transcripase 2.0 is a recombinant enzyme expressed and purified through multiple steps.

Concentration

200U/µl

Features

- 1. No RNase H activity;
- 2. The length of synthesized cDNA is better than that of wild-type M-MLV reverse transcriptase;
- 3. Good thermal stability: can withstand reactions at 55-60°C.

Application

- 1. First strand cDNA synthesis
- 2. Synthesis of full-length cDNA and preparation of cDNA library;
- 3. RT-PCR and Real Time RT-PCR reactions.

Unit definition

At 37°C, using Poly (A) - Oligo (dT) as a template/primer, the amount of enzyme required to add 1nmol of [3H] dTTP within 10 minutes is defined as 1 active unit (U).

Quality control

Related tests have shown that there is no contamination of exogenous endonuclease or exonuclease. PCR method for detecting residual DNA without host.

Storage buffer

20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 0.01% Nonidet P40, and 50% glycerol.

For Research Use Only

Email: sales@tinzyme.com Website: www.tinzyme.com Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

Note

- 1. It is recommended to prepare PCR reaction solution on ice before placing it into the PCR instrument for amplification. This is beneficial for improving the specificity of amplification, reducing non-specific amplification, and obtaining good PCR results.
- 2. To reduce the potential RNA degradation caused by RNaseA contamination, leading to cDNA synthesis failure, it is strongly recommended to add 1µl of RNase inhibitor to each reaction.
- 3. RNA related experiments are strictly prohibited from RNase A contamination, and disposable masks and gloves must be worn and replaced in a timely manner during operation.
- 4. RNA is unstable under alkaline conditions, avoid dissolving RNA in high pH solutions.

Protocol

(Example 1- Two step RT-PCR)

First strand cDNA synthesis experiment

If the template RNA is extracted using an RNA extraction kit and residual genomic DNA has been removed, the following steps can be directly carried out; Otherwise, please remove gDNA first.

1.	Add the following	components to a	PCR tube free	of nuclease	contamination:
1.	rida die fono ming	componento to a	1 010 0000 1100	or macroabe	contamination.

Component	Volume/µl	Final concentration
Oligo(dT)20(50µM)		5.0 µM
or Random Primers(25µM)	1	2.5 μM
or Specific Primer(10µM)		1.0 µM
RNA Template*	1-5	100ng-1µg
Nuclease-free Water	Up to 10	/
Total	10	/

Note: The usage of Total RNA is generally 10ng~1µg; The usage of mRNA is generally 0.1ng~1µg.

2. Incubate the above mixture at 65-70°C for 5-10 minutes, quickly remove and cool on ice for 2-3 minutes;

3. Continue to prepare the following reaction mixture:

Component	Volume/µl	Final concentration
The above template RNA/primer denaturation solution	6	/
5×RT Buffer(含 DTT)	4	$1 \times$
dNTPs(10.0 mM)	1	0.5 mM
MMLV Reverse Transcripase 2.0(200 U/µl)	0.5	/
RNase Inhibitor (40 U/µl)*	1	/
Nuclease-free Water	Up to 20	/
Total	20	/

Note: Optional. To reduce the potential RNA degradation caused by RNaseA contamination, it is recommended to add 1µl per reaction.

4. Gently tap and mix with your fingers, then centrifuge instantly;

- 5. If Oligo (dT) 20 or gene specific primers are used, react at 42-50°C for 30-60 minutes; If using random primers, first incubate at 25°C for 10 minutes, and then react at 42-50°C for 30-60 minutes;
- After the reaction is completed, hold at 80°C for 1-5 minutes to inactivate RTase and terminate the reaction. Then cool on ice for subsequent experiments, or immediately store at -20°C.

The obtained cDNA solution can be directly used for the synthesis of second stranded cDNA or PCR amplification, etc, It is recommended to use 1-5µl of cDNA solution during PCR amplification.

PCR amplification of target cDNA experiment

PCR amplification was performed using the cDNA containing the target gene obtained from the first strand cDNA synthesis experiment as a template. The following PCR reaction example is a 50µl standard PCR system, for reference only. The actual PCR

For Research Use Only

Tinzyme Co., Limited

Email: sales@tinzyme.com Website: www.tinzyme.com Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

conditions should be optimized based on the template, primers, and target fragment size to determine the optimal reaction conditions.

1. Prepare PCR mixture according to the following formula

Component	Volume/µl	Final concentration
10×Taq Buffer	5	$1 \times$
dNTPs(2.0 mM)	5	0.2 mM
Primer F(10µM)	1.5	0.3 µM
Primer R(10µM)	1.5	0.3 μΜ
The above cDNA solution*	1-4	/
Taq(2.5U/µl)	1.0	2.5U
ddH ₂ O	up to 50	/
Total	50	/

Note: The amount of cDNA template used in a 50µl PCR system is 10ng-1µg.

2. PCR reaction conditions

Temperature	Time	Cycles
95°C	5 min	
95°C	15 sec	ן
55~72°C	20 sec	- 30 Cycles
72°C	1-2kb/min	J
72°C	1-5 min	

Application Example 2 One Step RT-PCR

One step RT-PCR combines RNA reverse transcription into cDNA and PCR reaction of target cDNA.

8 1 1	5	1)
Component	Volume/µl	Final concentration
5×RT Buffer	10	1×
dNTPs(2.0 mM)	5	0.2 mM
Primer F(10µM)	2	0.3 µM
Primer R(10µM)	2	0.3 µM
Total RNA*	X*	/
Taq(2.5U/µl)	1.0	2.5U
MMLV Reverse Transcripase 2.0(200U/µl)	0.5	100U
RNase Inhibitor (40U/µl)	1	40U
Nuclease-free ddH2O	Zμl	/
Total	50	/

1. The following is a one-step amplification standard system (50 μ l).

Note: The usage of Total RNA is generally 10 ng~1µg; The usage of mRNA is generally 1ng~1µg

2. PCR reaction conditions

Temperature	Time Cycles	
42-50°C	30 min	
95°C	3 min	
95°C	15 sec	
55~72°C	20 sec -30 Cycles	
72°C	1-2kb/min	
72°C	3 min	